

Dimensionamento e análise da deformação de um grupo de estacas

Programa: Grupo de Estacas

Arquivo: Demo_manual_18.gsp

O objetivo deste capítulo é explicar como utilizar o programa GEO5 Grupo de Estacas para analisar a rotação angular e o deslocamento de uma placa rígida de capeamento de estacas, determinar as forças internas atuantes ao longo da cada estaca e dimensionar a secção transversal das estacas.

Definição do problema

A definição geral do problema é descrita em um dos capítulos anteriores (12. Fundações por estacas – introdução). Todas as análises da capacidade de suporte vertical de um grupo de estacas devem ser executadas, de acordo com o problema anterior (17. Análise da capacidade de suporte vertical e assentamento de um grupo de estacas). O carregamento resultante, que compreende N, M_y, H_x , atua no centro da superfície superior da placa de capeamento das estacas. O dimensionamento das estacas deve ser realizado de acordo com a Norma EN 1992-1-1 (EC 2), considerando os valores standard para os coeficientes parciais.

Esboço do problema – grupo de estacas

Resolução

Para resolver este problema, vamos utilizar o programa GEO5 Grupo de Estacas. Para simplificar o problema e tornar a configuração dos parâmetros gerais mais rápida, **vamos utilizar os dados base definidos para o Manual anterior** No. *17. Análise da capacidade de suporte vertical e assentamento de um grupo de estacas*.

Vamos analisar o grupo de estacas através do *Método de Mola*, que permite a modelação individual de estacas como se fossem vigas assentes em solo elástico. Cada estaca é dividida internamente em dez secções, para as quais são computados os valores de molas horizontais e verticais. A laje base (placa de capeamento) é considerada como infinitamente rígida. A análise é realizada considerando a deformação variável do Método dos Elementos Finitos.

Definição do procedimento

Começamos por abrir o ficheiro relativo ao Manual No. 17, no programa Grupo de Estacas. Depois, na janela "Configurações", alteramos o método de análise para a opção "Método de Mola". Vamos considerar a ligação entre as estacas e a base da laje como *rígida, isto é, fixa*. Assume-se que para esta condição de fronteira, o momento fletor será transferido na cabeça das estacas.

Para a capacidade da estaca na base, selecionamos a opção "estacas flutuantes – calcular rigidez das molas a partir dos parâmetros do solo".

Nota: O programa permite várias opções para as condições de fronteira, para a capacidade vertical das estacas. Para a capacidade das extremidades das estacas, ou para estacas fixas no bedrock, a rigidez vertical das molas não é definida – a base das estacas é modelada como uma junta ou uma junta deslizante. Para estacas flutuantes, é necessário definir a dimensão das molas verticais, tanto na superfície como na base da estaca. O programa permite definir a dimensão das molas, mas é mais razoável selecionar a opção "computar tamanho das molas". Neste caso, o programa computa a dimensão das molas a partir das propriedades de deformação dos solos para o carregamento definido (mais detalhes em Ajuda – F1).

1	Configurações de análises :	(apenas para a tarefa atual)		Selecionar			
Configurações	Estruturas de concreto : Coeficientes EN 1992-1-1 : Estruturas em aço : Fator parcial da cap. de carg	ja da secção transversal em aço :	EN 1992-1-1 (EC2) Norma EN 1993-1-1 (EC3) Y _{M0} = 1.00	 Configurações Administrador de configurações Administrador administrador Editar 	Tipo de análise : Tipo de estaca : Conexão / capeamento das estacas : Módulo de reação do subsolo :	método de moia estacas flutuantes - calcular rigidez das molas a partir dos parâmetros do solo fixo constante	•

Janela "Configurações" – Método de Mola

GE05

O módulo de reação horizontal do subsolo caracteriza o comportamento das estacas na direção horizontal. Nesta análise, vamos considerar o módulo k_h (incluindo os parâmetros que afetam o seu valor) como idêntico ao utilizado na análise de uma estaca isolada (ver Manual No. *16. Análise da capacidade de suporte horizontal de uma estaca isolada).* Na primeira parte deste capítulo, vamos realizar a análise considerando um módulo de reação do subsolo **constante** e, na segunda parte, vamos comparar as diferenças entre os resultados obtidos através de outros métodos (linear – de acordo com Bowles, de acordo com a Norma CSN 73 1004 e de acordo com Vesic).

Ao alterar o método de determinação do módulo de reação do subsolo, também é necessário editar os parâmetros do solo na janela "Solos". Os valores considerados para estes parâmetros serão os mesmo que os utilizados no Manual No. 16. Para clarificar, a tabela seguinte mostra estes valores.

Módulo de reação do subsolo $k_h \left[MN/m^3 ight]$	Ângulo de dispersão β [–]	Coeficiente $k \left[MN/m^3 \right]$	Módulo de elasticidade E [MPa]	Módulo de compressibilidade horizontal $n_h \left[MN/m^3 ight]$
CONSTANTE	10 – CS			
	13 51			
LINEAR (Bowles)	10 – CS	60 – CS		
· · ·	15 – S-F	150 – S-F		
CSN 73 1004	Solo coesivo – CS, consistência firme			
	Solo não coe	sivo – S-F, medi	4.5	
			5.0 – CS	
VESIC			15.5 – S-F	

Tabela com sumário dos parâmetros do solo para a capacidade de suporte horizontal de uma estaca

isolada

Na janela "Molas verticais", vamos selecionar o carregamento típico, que serve para calcular a rigidez das molas verticais. No nosso caso, vamos escolher a opção "Carga No. 2 – Serviço".

I.	Carga típica (para o cálculo de molas verticais)
	Carga No. 2
ais	
/ertic	
las v	
Ř	

Janela "Molas Verticais" – carregamento típico

Nota: Para o caso da opção Carregamento típico, deve ser aplicada a carga de serviço (característica) que melhor se adequa ao comportamento real da estrutura (para mais detalhes veja a Ajuda do Programa – F1). O procedimento para computar as molas verticais é o seguinte:

- a) O carregamento calculado é distribuído ao longo de cada estaca.
- b) A dimensão das molas verticais na superfície da estaca e na sua base é determinado para cada estaca, dependendo do carregamento e dos parâmetros do solo.

O efeito do carregamento é significativo para a rigidez calculada – por exemplo, a rigidez da mola na base é sempre nulo para uma estaca tracionada. Assim, em alguns casos poderá ser vantajoso executar vários cálculos, para diferentes carregamentos típicos.

GE05

Análise: Método de Mola

Na janela "Análise", vamos realizar a análise do grupo de estacas, de acordo com as configurações iniciais (módulo de reação horizontal do subsolo **constante**) e vamos visualizar os resultados com os diagramas das forças internas.

······································		Modos _ Projeto Configurações				
-1547547374 3330m 0.0 mm 72 25,6 mm						
**************************************	₹ ₹ ₹ 5,524 5,524					
 Andise Resultados: Load No. 1 Mostrar resultados: todas as estacas 	Resultados	M Análise				
- Valores	Forças internas máximas (todas as combinações de cargas)					
Momento fletor X [kNm] Construção : indeformada 🗸 Valores : significante 👻	Força de compressão máx. = -1803,97 kN					
✓ Momento fletor Y [kNm] Ø Deslocamento e rotação da base Tamanho das legendas: pequeno ▼	Força de compressão mín. = -532,01 kN Momento de flexão máx. = 154.51 kNm					
Força Normal [kN] Reações [kNm] Hachura	Força de corte máxima = 77,50 kN	Resultados _				
Força de corte X [kl] Mola [MN/m]	Deslocamentos máximos (apenas combinações de cargas de	B' Adicionar imagem				
briga de conter Y [kN]	serviço)	Total: 3				
Deslocamento Y [mm]	Assentamento máximo = 19,6 mm	🗗 Lista de imagens				
Deslocamento Z [mm]	Rotação da base máxima = 1,5E-02 °					
g Molas verticais (MN/m)						
F Molas horizontais [MN/m ³]		Copiar figura				

Janela "Análise" – Método de Mola (módulo de reação do subsolo constante)

Nota: A rigidez das estacas do grupo é automaticamente alterada de acordo com a sua localização. As estacas exteriores e as interiores de um grupo de estacas têm a rigidez horizontal e transversal reduzidas em comparação com as estacas isoladas. As molas na base das estacas não são reduzidas (mais detalhes na Ajuda – F1).

Os resultados da análise para as configurações iniciais (para a deformação máxima) são:

-	Assentamento máximo:	19.6 mm
_	Desloc. horizontal máx. da placa de capeamento:	2.6 mm
_	Rotação máxima da placa de capeamento:	$1.5 \cdot 10^{-2}$ °

Dimensionamento

Agora, passamos à janela "Dimensionamento" e, de forma semelhante ao realizado no capítulo No. *16. Análise da capacidade de suporte horizontal de uma estaca isolada*, vamos dimensionar a armadura principal das estacas. Vamos considerar um rácio de armadura idêntico em todas as estacas do grupo – **16 barras Ø 16 mm** e um recobrimento de concreto mínimo de **60 mm**, para uma classe de exposição XC1.

O rácio de armadura para um grupo de estacas sob um carregamento comum, é considerado, para este caso, de acordo com a norma CSN EN 1536:1999 (de forma idêntica ao capítulo No. *16*). No programa, esta opção é definida como uma "estaca" (mais detalhes na Ajuda – F1).

Janela "Dimensionamento" – resultados para todas as estacas do grupo a partir da envolvente das combinações de cargas

É possível observar a utilização da secção transversal de todas as estacas do grupo, para flexão e condição do rácio de armadura mínima, para a envolvente global das combinações de cargas:

-	Cap. de suporte da estaca em concreto armado (corte):	16.4 %	SATISFAZ
_	Cap. de suporte da estaca em concreto armado (flexão):	20.8 %	SATISFAZ
_	Rácio de armadura:	77.7 %	SATISFAZ

GE05

Resultados da análise

O procedimento para as outras análises disponíveis no programa é análogo ao procedimento aplicado nos problemas anteriores. É sempre necessário alterar o método de cálculo do módulo de reação do subsolo, na janela "Configurações", editar os parâmetros do solo conforme necessário e realizar a análise do grupo de estacas, nas janelas "Análise" e "Dimensionamento". Os resultados obtidos estão presentes nas tabelas seguintes.

Módulo de reação do subsolo $k_h \left[M\!N/m^3 ight]$	Força de compressão (máximo, mínimo) [kN]	Momento fletor máximo [<i>kNm</i>]	Força de cisalhamento máxima [kN]	
CONSTANTE	-1803.97	154 51	77 50	
CONSTANTE	-532.01	134.31	77.50	
LINEAR	-1822.08	190 74	77.50	
(Bowles)	-526.06	190.74		
de acordo com a Norma	-1815.70	177 97	77 50	
CSN 73 1004	-528.18	177.57	77.50	
do acordo com VESIC	-1827.92	202.41	77 50	
	-524.15	202.41	11.50	

Sumário de resultados (forças internas) – Verificação do grupo de estacas (método de mola)

Módulo de reação do subsolo $k_h \left[MN/m^3 \right]$	Assentamento máximo [mm]	Deslocamento máximo [<i>mm</i>]	Rotação máxima da laje [°]	Cap. suporte da estaca [%]
CONSTANTE	19.6	2.6	$1,5 \cdot 10^{-2}$	20.8
LINEAR (Bowles)	19.9	3.5	$2 \cdot 10^{-2}$	22.1
de acordo com a Norma CSN 73 1004	19.8	3.3	1,8 · 10 ⁻²	21.6
de acordo com VESIC	20.1	4.7	$2,2 \cdot 10^{-2}$	22.6

Sumário de resultados – deslocamentos e dimensionamento do grupo de estacas

Conclusão

Os valores para o assentamento máximo do grupo de estacas, deslocamentos e rotação da laje estão dentro dos limites permitidos.

A partir dos resultados da análise, é possível verificar que os valores das forças internas ao longo de cada estaca e as deformações máximas na cabeça das estacas variam ligeiramente, mas a influência do método selecionado para o cálculo do módulo de reação do subsolo k_h não é significativa.

A armadura proposta para as estacas é satisfatória. A condição principal para o rácio de armadura das estacas também é verificada.